Math99—LaTexFormula Editor
Login
OCR Start Recognition
Select a file or drag it here
Support JPEG,JPG, PNG.
Upload File
OCR Start Recognition
Recognition Result
Preview Area
Cancel
Confirm
Handwriting
Recognition Result
Preview Area
Cancel
Start Recognition
Confirm Insertion
收起
模板_高中数学
小学数学
初中数学
高中数学
高等数学
物理
化学
常用
运算
关系
箭头
希腊
矩阵
上下标
大型运算
函数
sin双曲三角函数
Generating
快速输入
数学
物理
化学
小学数学
初中数学
高中数学
高等数学
伯努利不等式
(
1
+
x
)
n
≥
1
+
n
x
(
x
>
−
1
,
n
∈
N
+
)
(1 + x)^n \geq 1 + nx \quad (x > -1, \ n \in \mathbb{N}^+ )
(
1
+
x
)
n
≥
1
+
n
x
(
x
>
−
1
,
n
∈
N
+
)
二次不等式(判别式)
a
x
2
+
b
x
+
c
≥
0
或
a
x
2
+
b
x
+
c
≤
0
ax^2 + bx + c \geq 0 \text{ 或 } ax^2 + bx + c \leq 0
a
x
2
+
b
x
+
c
≥
0
或
a
x
2
+
b
x
+
c
≤
0
柯西不等式(均方根不等式)
(
a
1
2
+
a
2
2
+
⋯
+
a
n
2
)
(
b
1
2
+
b
2
2
+
⋯
+
b
n
2
)
≥
(
a
1
b
1
+
a
2
b
2
+
⋯
+
a
n
b
n
)
2
(a_1^2 + a_2^2 + \cdots + a_n^2)(b_1^2 + b_2^2 + \cdots + b_n^2) \geq (a_1b_1 + a_2b_2 + \cdots + a_nb_n)^2
(
a
1
2
+
a
2
2
+
⋯
+
a
n
2
)
(
b
1
2
+
b
2
2
+
⋯
+
b
n
2
)
≥
(
a
1
b
1
+
a
2
b
2
+
⋯
+
a
n
b
n
)
2
洛必达法则(极限不等式)
lim
x
→
a
f
(
x
)
g
(
x
)
=
lim
x
→
a
f
′
(
x
)
g
′
(
x
)
当
g
′
(
x
)
≠
0
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \quad \text{当 } g'(x) \neq 0
lim
x
→
a
g
(
x
)
f
(
x
)
=
lim
x
→
a
g
′
(
x
)
f
′
(
x
)
当
g
′
(
x
)
=
0
闵科夫斯基不等式
(
∑
i
=
1
n
(
a
i
+
b
i
)
p
)
1
/
p
≤
(
∑
i
=
1
n
a
i
p
)
1
/
p
+
(
∑
i
=
1
n
b
i
p
)
1
/
p
( \sum_{i=1}^n (a_i + b_i)^p )^{1/p} \leq ( \sum_{i=1}^n a_i^p )^{1/p} + ( \sum_{i=1}^n b_i^p )^{1/p}
(
∑
i
=
1
n
(
a
i
+
b
i
)
p
)
1
/
p
≤
(
∑
i
=
1
n
a
i
p
)
1
/
p
+
(
∑
i
=
1
n
b
i
p
)
1
/
p
切比雪夫不等式
a
1
b
1
+
a
2
b
2
+
⋯
+
a
n
b
n
≥
a
1
+
a
2
+
⋯
+
a
n
b
1
+
b
2
+
⋯
+
b
n
\frac{a_1}{b_1} + \frac{a_2}{b_2} + \cdots + \frac{a_n}{b_n} \geq \frac{a_1 + a_2 + \cdots + a_n}{b_1 + b_2 + \cdots + b_n}
b
1
a
1
+
b
2
a
2
+
⋯
+
b
n
a
n
≥
b
1
+
b
2
+
⋯
+
b
n
a
1
+
a
2
+
⋯
+
a
n
三角形不等式(向量形式)
∣
a
+
b
∣
≤
∣
a
∣
+
∣
b
∣
| \mathbf{a} + \mathbf{b} | \leq | \mathbf{a} | + | \mathbf{b} |
∣
a
+
b
∣
≤
∣
a
∣
+
∣
b
∣
斯特林公式
n
!
≈
2
π
n
(
n
e
)
n
n! \approx \sqrt{2\pi n} \left( \frac{n}{e} \right)^n
n
!
≈
2
π
n
(
e
n
)
n
算术-几何-调和平均值不等式
a
+
b
2
≥
a
b
≥
2
a
b
a
+
b
\frac{a + b}{2} \geq \sqrt{ab} \geq \frac{2ab}{a+b}
2
a
+
b
≥
a
b
≥
a
+
b
2
a
b
算术平均值不小于几何平均值
a
1
+
a
2
+
⋯
+
a
n
n
≥
a
1
a
2
⋯
a
n
n
\frac{a_1 + a_2 + \cdots + a_n}{n} \geq \sqrt[n]{a_1 a_2 \cdots a_n}
n
a
1
+
a
2
+
⋯
+
a
n
≥
n
a
1
a
2
⋯
a
n
詹森不等式
f
(
a
1
+
a
2
+
⋯
+
a
n
n
)
≤
f
(
a
1
)
+
f
(
a
2
)
+
⋯
+
f
(
a
n
)
n
f\left( \frac{a_1 + a_2 + \cdots + a_n}{n} \right) \leq \frac{f(a_1) + f(a_2) + \cdots + f(a_n)}{n}
f
(
n
a
1
+
a
2
+
⋯
+
a
n
)
≤
n
f
(
a
1
)
+
f
(
a
2
)
+
⋯
+
f
(
a
n
)
正数的加权平均值不等关系
a
1
w
1
+
a
2
w
2
+
⋯
+
a
n
w
n
w
1
+
w
2
+
⋯
+
w
n
≥
a
1
w
1
a
2
w
2
⋯
a
n
w
n
n
\frac{a_1 w_1 + a_2 w_2 + \cdots + a_n w_n}{w_1 + w_2 + \cdots + w_n} \geq \sqrt[n]{a_1^{w_1} a_2^{w_2} \cdots a_n^{w_n}}
w
1
+
w
2
+
⋯
+
w
n
a
1
w
1
+
a
2
w
2
+
⋯
+
a
n
w
n
≥
n
a
1
w
1
a
2
w
2
⋯
a
n
w
n
对数函数
y
=
log
a
x
y = \log_a{x}
y
=
lo
g
a
x
二次函数
y
=
a
x
2
+
b
x
+
c
y = ax^2 + bx + c
y
=
a
x
2
+
b
x
+
c
反比例函数
y
=
k
x
y = \frac{k}{x}
y
=
x
k
一次函数
y
=
m
x
+
b
y = mx + b
y
=
m
x
+
b
指数函数
y
=
a
x
y = a^x
y
=
a
x
导数定义
f
′
(
x
)
=
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
f
′
(
x
)
=
lim
h
→
0
h
f
(
x
+
h
)
−
f
(
x
)
对数函数导数
d
d
x
(
log
a
x
)
=
1
x
ln
a
\frac{d}{dx}(\log_a{x}) = \frac{1}{x \ln a}
d
x
d
(
lo
g
a
x
)
=
x
ln
a
1
复合函数导数
d
d
x
(
f
(
g
(
x
)
)
)
=
f
′
(
g
(
x
)
)
⋅
g
′
(
x
)
\frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)
d
x
d
(
f
(
g
(
x
)
)
)
=
f
′
(
g
(
x
)
)
⋅
g
′
(
x
)
幂函数导数
d
d
x
(
x
n
)
=
n
x
n
−
1
\frac{d}{dx}(x^n) = nx^{n-1}
d
x
d
(
x
n
)
=
n
x
n
−
1
指数函数导数
d
d
x
(
e
x
)
=
e
x
\frac{d}{dx}(e^x) = e^x
d
x
d
(
e
x
)
=
e
x
复数方程
z
=
a
+
b
i
z = a + bi
z
=
a
+
b
i
高次方程
x
n
+
a
n
−
1
x
n
−
1
+
.
.
.
+
a
0
=
0
x^n + a_{n-1}x^{n-1} + ... + a_0 = 0
x
n
+
a
n
−
1
x
n
−
1
+
.
.
.
+
a
0
=
0
线性方程组
{
a
x
+
b
y
=
c
d
x
+
e
y
=
f
\begin{cases} ax + by = c \\ dx + ey = f \end{cases}
{
a
x
+
b
y
=
c
d
x
+
e
y
=
f
一元二次方程
a
x
2
+
b
x
+
c
=
0
ax^2 + bx + c = 0
a
x
2
+
b
x
+
c
=
0
对称轴
x
=
−
b
2
a
x = -\frac{b}{2a}
x
=
−
2
a
b
方程的解
x
=
−
b
±
b
2
−
4
a
c
2
a
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
x
=
2
a
−
b
±
b
2
−
4
a
c
根的和
x
1
+
x
2
=
−
b
a
x_1 + x_2 = -\frac{b}{a}
x
1
+
x
2
=
−
a
b
根的积
x
1
⋅
x
2
=
c
a
x_1 \cdot x_2 = \frac{c}{a}
x
1
⋅
x
2
=
a
c
线性方程
a
x
+
b
y
=
c
ax + by = c
a
x
+
b
y
=
c
等比数列
a
n
=
a
1
⋅
r
n
−
1
a_n = a_1 \cdot r^{n-1}
a
n
=
a
1
⋅
r
n
−
1
等差数列
a
n
=
a
1
+
(
n
−
1
)
d
a_n = a_1 + (n-1)d
a
n
=
a
1
+
(
n
−
1
)
d
等差数列求和
S
n
=
n
2
(
a
1
+
a
n
)
S_n = \frac{n}{2} (a_1 + a_n)
S
n
=
2
n
(
a
1
+
a
n
)
矩形的面积
S
=
a
×
b
S = a \times b
S
=
a
×
b
平行四边形的面积
S
=
b
×
h
S = b \times h
S
=
b
×
h
三角形的面积
S
=
1
2
×
b
×
h
S = \frac{1}{2} \times b \times h
S
=
2
1
×
b
×
h
圆的面积
S
=
π
r
2
S = \pi r^2
S
=
π
r
2
圆的周长
C
=
2
π
r
C = 2\pi r
C
=
2
π
r
直角三角形的勾股定理
a
2
+
b
2
=
c
2
a^2 + b^2 = c^2
a
2
+
b
2
=
c
2
向量的夹角
θ
=
cos
−
1
(
u
⃗
⋅
v
⃗
∣
u
⃗
∣
∣
v
⃗
∣
)
\theta = \cos^{-1} \left( \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|} \right)
θ
=
cos
−
1
(
∣
u
∣
∣
v
∣
u
⋅
v
)
向量的模
∣
v
⃗
∣
=
v
1
2
+
v
2
2
+
v
3
2
+
⋯
+
v
n
2
|\vec{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2 + \cdots + v_n^2}
∣
v
∣
=
v
1
2
+
v
2
2
+
v
3
2
+
⋯
+
v
n
2
向量的数量积
u
⃗
⋅
v
⃗
=
∣
u
⃗
∣
∣
v
⃗
∣
cos
(
θ
)
\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos(\theta)
u
⋅
v
=
∣
u
∣
∣
v
∣
cos
(
θ
)
向量定义
a
⃗
=
(
x
,
y
)
\vec{a} = (x, y)
a
=
(
x
,
y
)
数量积的计算
u
⃗
⋅
v
⃗
=
u
1
v
1
+
u
2
v
2
+
u
3
v
3
+
⋯
+
u
n
v
n
\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3 + \cdots + u_n v_n
u
⋅
v
=
u
1
v
1
+
u
2
v
2
+
u
3
v
3
+
⋯
+
u
n
v
n
向量加法
a
⃗
+
b
⃗
=
(
x
1
+
x
2
,
y
1
+
y
2
)
\vec{a} + \vec{b} = (x_1 + x_2, y_1 + y_2)
a
+
b
=
(
x
1
+
x
2
,
y
1
+
y
2
)
查看更多
Common
Operation
Relation
Arrow
Greek
Matrix
Superscript/Subscript
Large Operation
Function
Sine Hyperbolic Trigonometric Function
+
/
×
±
-
÷
≤
∪
∈
∩
≰
⊂
π
ϕ
∞
θ
α
β
Edit
Export
Font
Environment
LaTex
MathType
Press Twice Ctrl Key
AI Generated
or Copy
Instant Image Recognition
AIGC
Press Twice Ctrl Key
AI Generated
or Copy
Instant Image Recognition
AIGC
OCR
Handwriting
AIGC
Preview
Export
Preview Area
Preview Area
Word
PNG
PNGHD
JPG
JPGHD
LaTeX
HTML
MathML
MathML(mml)
MathML(m)
MathML(attr)
SVG
Red
Yellow
Green
Orange
Peach
Tan
Blue
Brown
Purple
Violet
Gray
Other Colors
Extra Small
Super Small
Small
Normal
Large
Extra Large
Super Large
Huge
Giant
mathrm
mathnormal
textrm
rm
textnormal
text
textup
mathit
textit
it
emph
mathbf
textbf
bf
bold
boldsymbol
bm
textmd
mathtt
texttt
tt
mathsf
textsf
sf
mathsfit
Bbb
mathbb
frak
mathfrak
mathcal
cal
mathscr
underline
none
array-left
array-right
displaylines
align
equation
gather
cases
matrix
pmatrix
bmatrix
vmatrix
Vmatrix